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Abstract
We study the effect of gradual symmetry breaking in a non-integrable system
on the level fluctuation statistics. We consider the case when the symmetry
is represented by a quantum number that takes one of two possible values,
so that the unperturbed system has a spectrum composed of two independent
sequences. When symmetry-breaking perturbation is represented by a random
matrix with an adjustable strength, the shape of the spectrum monotonically
evolves towards the Wigner distribution as the strength parameter increases.
This contradicts the observed behaviour of the acoustic resonance spectra
in quartz blocks during the breaking of a point-group symmetry, which are
changed in the beginning towards the Poisson statistics and then revert to the
GOE statistics. This behaviour is explained by assuming that the symmetry-
breaking perturbation removes the degeneracy due to symmetry for a limited
number of levels, thus creating a third chaotic sequence. As symmetry breaking
increases, the new sequence grows at the expense of the initial pair until it
overwhelms the whole spectrum when the symmetry completely disappears.
The calculated spacing distribution and spectral rigidity are able to describe
the evolution of the acoustic resonance spectra.

PACS numbers: 05.45.+b, 03.65.Sq, 11.30.Er, 24.60.Lz, 62.30+d

1. Introduction

The statistical theory of spectra [1] provides an appropriate method for examining the symmetry
properties of quantum systems. Level statistics such as the nearest-neighbour spacing (NNS)
distribution and the spectral rigidity�3 are defined for a pure sequence of levels that have the
same quantum numbers. Usually it is taken for granted that in a classically integrable system,
which has as many integrals of motion (or quantum numbers) as the number of degrees of
freedom, the levels are uncorrelated and so have a Poissonian NNS distribution. The pure level
sequence in a time-reversal-invariant quantum system whose classical counterpart is chaotic,
is successfully represented by a Gaussian orthogonal ensemble (GOE) of random matrices.
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These well-established conjectures are applicable to completely integrable or chaotic systems.
There are, however, intermediate situations. One is of mixed systems, where in some parts
of the corresponding phase space the motion is regular and in other parts it is chaotic [2–4].
Other types of systems that exhibit intermediate statistics are those with singularities that are
integrable in the absence of these singularities (see, e.g., [5–7]).

The statistical theory of spectra has also been extensively used in the investigation of
symmetry breaking because the destruction of a quantum number has a dramatic effect on
spectral fluctuations. The studies of isospin mixing in light nuclei are impressive [8]. Shriner
et al [9] measured a ‘complete’ spectrum of low-lying states of 26Al involving states with
isospins T = 0 and 1 throughout the energy range covered by the data. These data offered
a testing ground for studying the influence of isospin-symmetry breaking on the fluctuation
properties of energy spectra (see, e.g., [10–13]). However, the limited data available in 26Al
(142 levels) precluded a definite conclusion. In a recent experiment with monocrystalline
quartz blocks, Ellegaard et al [14] measured about 1400 well-resolved acoustic resonances.
The properties of quartz allowed these authors to measure the gradual break-up of a point-
group symmetry, which is statistically fully equivalent to the breaking of a quantum number
such as isospin. The spectra are obtained by externally tuning the symmetry breaking [14],
allowing a statistically significant investigation of the whole transition.

In the present paper we consider the effect of gradual symmetry breaking on the fluctuation
properties of energy levels. When the symmetry is full the spectrum is divided into independent
sequences, each corresponding to one of the eigenvalues of the symmetry operator. We
consider two possible scenarios for breaking the symmetry. The first is provided by the Guhr–
Weidenmüller model [11], which assumes that the matrix elements between states of different
symmetry eigenvalues are random numbers of equal variances. In the second scenario,
the symmetry-breaking interaction mixes a limited number of the degenerate eigenstates
that belong to different symmetry representations, and this number grows as we increase
symmetry breaking. We are thus creating a new sequence of levels corresponding to states
with no symmetry at the expense of the initial sequences. Consequently, as the fractional
density of the no-symmetry sequence increases, the �3 statistic of the total spectrum first
increases, moving in the direction of the prediction of the Poisson statistics until the densities
of all the sequences become equal, and then decreases to reach the value given by the GOE
asymptotically. Section 3 shows that the behaviour described by the second scenario is indeed
present in the data of Ellegaard et al [14]. The summary and conclusion of this study are given
in section 4.

2. Symmetry breaking in a chaotic system

We consider a chaotic system that conserves a given symmetry. In such a system, the
Hamiltonian assumes a block-diagonal form [1]:

HS = diag(H1,H2, . . . , Hn) (1)

where each sub-block corresponds to states of a certain quantum number. Thus, when the
symmetry is conserved, the levels are divided into a number of ‘pure’ sequences, each
described by a pure GOE. However, the statistical properties of the total spectrum that
combines these sequences are no longer of the GOE type. In the limit of infinite number of
sequences combined, the spectrum obeys Poisson statistics. For finite number of sequences,
the fluctuation properties are intermediate between the Poisson and GOE statistics. In the
following, we shall restrict our consideration to the case when the symmetry under investigation



Influence of symmetry breaking on the fluctuation properties of spectra 2363

is represented by an operator that has two possible eigenvalues, such as parity, or isospins 0
and 1 as considered in [9–13].

The NNS distribution of a spectrum resulting from a random superposition of n
independent sequences is calculated, e.g. by Berry and Robnik [2] and in Mehta’s book
[15]. If the level density of the ith sequence is ρi , and if the NNS distribution of levels of
this sequence is Pi(xi), where xi = fis, fi = ρi/�ρi, and s is the NNS normalized to a unit
mean, then the NNS distribution of the mixed sequence is given by

P(s) = E(s)



∑
i

f 2
i

Pi (fis)

Ei (fis)
+

[∑
i

fi
1 −Wi(fis)

Ei(fis)

]2

−
∑
i

[
fi

1 −Wi(fis)

Ei(fis)

]2

 (2)

where E(s) = ∏n
i=1 Ei(fis), Ei(xi) = ∫∞

xi
[1 −Wi (x)] dx, and Wi(xi) = ∫ xi

0 Pi(x) dx. In
particular, if all the n individual sequences have the same level densities, so that fi = 1/n,
and if the NNS distribution in each is a Wigner distribution

Pi(xi) = π

2
xi e− π

4 x
2
i (3)

which is a good approximation for the NNS distribution of a GOE, then (2) becomes [16]

Pn(s) = 1

n

[
erfc

(
s
√
π

2n

)]n
Qn(s)

[ π
2n
s + (n− 1)Qn(s)

]
(4)

where Qn(s) = exp(−π2s2/4n2)/erfc(s
√
π/2n) and erfc(x) is the complementary error

function. This distribution has a shape intermediate between those of the Wigner and Poisson
distributions, but quite different from the Brody distribution [17],

PB (s) = cβs
β exp

(
− cβ

β + 1
sβ+1

)
with cβ = �β+1 (1/ (β + 1))

β + 1
(5)

which accurately reproduces the spectra of many two-dimensional systems with mixed regular-
chaotic dynamics. As β varies from 0 to 1, this distribution changes from the Poissonian form
to the GOE.

The NNS distribution contains information about the spectrum in a short range, not
exceeding a maximum of three mean level spacings. Long-range information is provided
by various higher order correlation functions [1, 15]. The most popular among these is
the spectral rigidity �3 of Dyson and Mehta [18]. It measures the mean square deviation of
the integrated density of states from a straight line in an interval of length L, averaged over the
starting point of the interval. Semiclassical arguments [19] show that, for a generic integrable
system whose spectrum satisfies the Poisson statistics

�3,Poisson(L) = L

15
for L � Lmax (6)

where Lmax = 2πh̄/DTmin, D is the mean level spacing and Tmin is the period of the shortest
classical orbit. For a time-reversal-invariant chaotic system the semiclassical theory gives the
following asymptotic expression

�3,GOE(L) = 1

π2
lnL− 0.007 for 1 � L � Lmax. (7)

In all cases �3 saturates to a non-universal value at L ∼ Lmax. The random matrix theory
obtains an analytical expression for �3,GOE(L) that involves double integration [1, 15]. We
find it more suitable to parametrize this expression for a GOE, guided by equation (7), in the
form

�3,GOE(L) = 1

π2
(1 − e−aL)[ln(L + b) + c] (8)
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with a = 8.24, b = 0.944 and c = −0.0672 being the best fit parameters for values of L in
the range 0 � L � 50. Seligman and Verbaarschot [20] suggested the following expression
for the spectral rigidity of a spectrum resulting from a random superposition of n independent
sequences with fractional level densities fi

�3(L) =
n∑
i=1

[�3,i(fiL)] (9)

where �3,i (L) is the spectral rigidity for the ith sequence. This proposal is not surprising
because�3(L) is essentially a variance.

We now consider symmetry breaking in the chaotic system using the Guhr–Weidenmüller
model [11]. The model suggests that the effect of the symmetry-breaking perturbation on all
the unperturbed states is equal in the average. This suggests defining the Hamiltonian in the
form

H =
[
H0 0
0 H0

]
+ α

[
0 W

WT 0

]
(10)

where H0 represents a GOE and W is a random matrix whose elements have Gaussian
distributions with zero means and variances equal to those of the non-diagonal elements of
H0, whileWT is its transpose. When α = 0, the symmetry is conserved and the Hamiltonian
has the block-diagonal form (1) with n = 2. The spectrum consists of an independent
superposition of two level sequences having equal density. The NNS distribution P(s) is
given by equation (4) and, in particular, P(0) = 1/2. The spectral rigidity is given by (9) with
f1 = f2 = 1/2. When we allow α to increase, the system gradually acquires the behaviour
of a single GOE. Leitner [21] has shown this analytically using an approximation which is
strictly valid when α is small. To show how the transition from 2-GOE statistics to that of a
single GOE proceeds, we considered an ensemble of ten 200 × 200 Hamiltonian matrices of
the form (10) for a fixed value of the perturbation strength α. We numerically diagonalized
these matrices. We obtained the NNS distribution and spectral rigidity for each of the resulting
spectra and measured their deviation from the GOE statistics by comparing with the Brody
distribution (5) for the NNS distribution and with the Seligman–Verbaarschot formula (9) for
the �3 statistic where �3,1 is given by the Poissonian statistic (6) and �3,2 by that of a GOE
as approximated by (8):

�3,SV(L) = qSV
L

15
+�3,GOE[(1 − qSV)L]. (11)

We then repeated the procedure for other value of α. The best fit values of the tuning parameters
β and qSV obtained for P(s) and �3(L) corresponding to different values of the perturbation
strength α are shown in figure 1. The monotonic nature of the curves clearly shows that the
transition from symmetry to no-symmetry in the Guhr–Weidenmüller model is gradual and
one-directional.

The opposite extreme of the Guhr–Weidenmüller model is the case when the
eigenfunctions become either very weakly or very strongly perturbed. The number of
eigenstates in each category depends on the degree of symmetry breaking. We shall consider
the limiting case when N1 and N2 of the states are so weakly affected by the perturbation that
the eigenfunctions can in principle be characterized by one of the two symmetry eigenvalues.
These will be the states for which the splitting of two degenerate levels belonging to different
symmetry representation can be neglected. All the remaining N3 states will be assumed to be
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Figure 1. The monotonic dependence of (a) the tuning parameter β in the Brody distribution
(equation (5)) for the NNS distributions, PB(s), and (b) the parameter qSV in the Seligman–
Verbaarschot formula (equation (11)) for the spectral rigidity �3(L) that interpolate between the
Poisson and GOE statistics, obtained by a numerical experiment on a chaotic system undergoing
a gradual breaking of a symmetry according to the Guhr–Weidenmüller model [11].

strongly mixed by the symmetry-breaking perturbation. In this case the Hamiltonian cannot
be represented by the form (10), and may rather be expressed as

H =

H1 0 0

0 H3 0
0 0 H2


 (12)

where Hi is a matrix of dimension Ni that satisfies the GOE statisics. We shall again assume
equal number of states for each symmetry states, N1 = N2 = N/2. The corresponding
levels will again form three independent level sequences. Two of them represent the
weakly unperturbed states, and have fractional level densities f1 = f2 = f/2, where
f = N/(N +N3). The levels of the strongly perturbed eigenstates will form the third
sequence with density f3 = 1 − f which will grow at the expense of the other two as the
symmetry-breaking perturbation increases. The NNS distribution will then be given, using
(2) and (3), by

P(s) = π

8
f 3s e−πf 2s2/16 erfc

(√
π

4
f s

)
erfc

[√
π

2
(1 − f ) s

]
+

1

2
f 2 e−πf 2s2/8

× erfc

[√
π

2
(1 − f ) s

]
+
π

2
(1 − f )3 s e−π(1−f )2s2/4

[
erfc

(√
π

4
f s

)]2

+ 2f (1 − f ) e−π(5f 2−8f +4)s2/16erfc

(√
π

4
f s

)
(13)
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for spacings exceeding a certain lower limit. If we ignore the latter condition and extrapolate
P(s) into the origin, we obtain

P(0) = f
(
2 − 3

2f
)

(14)

which increases with decreasing f from a value of 1/2 at f = 1, reaches a maximum value
of 2/3 at f = 2/3 and then deceases monotonically until it vanishes at f = 0. Equations (13)
and (14) show that the evolution of the shape of the NNS distributions with increasing
symmetry breaking and decreasing f , is not a straightforward transition from the 2-GOE
behaviour to that of a GOE. Indeed, by decreasing the value of f we mean removing some
of the levels from the initial two symmetry-invariant sequences to form the third sequence
that represents the states without symmetry. The distribution will look more regular when
we decrease f until the level densities of the three sequences become equal. If we further
increase the symmetry breaking, the initial sequences become thinner as more levels move to
the new chaotic group until the whole spectrum forms a single GOE sequence.

We can follow this transition better by calculating the spectral rigidity which is, for this
system, given by

�3(L) = 2�3,GOE

(
fL

2

)
+�3,GOE[(1 − f )L]. (15)

In figure 2, the results of the calculation for f = 1, 0.9, 0.667, 0.333, 0.1 and 0 are given
by the curves labelled by A, B, C, D, E and F, respectively, while the curve P corresponds
to a regular spectrum. The figure clearly shows that �3(L) increases as symmetry breaking
increases, and thus evolves towards the regular shape until f reaches the value of 2/3. Only
then�3(L) starts a route leading to the GOE curve.

We believe that the first model applies well to the cases when the Hamiltonian can be
represented as a superposition of two terms, one conserving the symmetry and the other
violating it. In nuclei, the isospin symmetry is violated by switching on the Coulomb force.
Indeed, the Guhr–Weidenmüller model [11] works well. However, we cannot be sure that this
model will work in cases when the symmetry-breaking term of the Hamiltonian cannot be
explicitly isolated. An example is the experiment with accoustic blocks [14] where symmetry
is violated by removing sections of the blocks. We shall see in the next section that the
proposed scenario, formulated by (12), is capable of reproducing the observed influence of
the symmetry breaking on the resonance spectra.

3. Comparison with acoustic resonance spectra

In this section, we show that the proposed application of the Berry–Robnik theory to symmetry
breaking leads to a satisfactory description of the acoustic resonance spectra of monocrystalline
quartz blocks, measured by Ellegaard et al [14]. Crystalline quartz exhibits D3 point-group
symmetry about the crystal’s Z (optical) axis and three two-fold rotation symmetries about
the three X (piezoelectric) axes; the latter three axes lie in a plane orthogonal to the Z axis
and sustain angles of 120◦ with respect to each other. Ellegaard et al used rectangular blocks
of dimensions 14 × 25 × 40 mm3, cut in such a way that all symmetries are fully broken
except a two-fold ‘flip’ symmetry about one of the three X axes. A gradual breaking of this
symmetry is then achieved by removing successively bigger octants of a sphere from one
corner, thereby creating a three-dimensional Sinai billiard. The acoustic spectrum is measured
for eight radii of the removed octant, providing data of high statistical significance for the
study of the gradual breaking of a point-group symmetry.
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Figure 2. The spectral rigidity �3(L) for a chaotic
system undergoing a gradual breaking of a symmetry
according to the scenario proposed in the paper. The
results of the calculation when the fraction of states
remains nearly symmetry invariant f = 1, 0.9, 0.667,
0.333, 0.1 and 0 are given by the curves labelled by A, B,
C, D, E and F, respectively, while the curve P corresponds
to a regular spectrum.

Figure 3. The spectral rigidity �3(L) measured in [14]
for the quartz block when the symmetry is present (open
circles), and when it is violated by removing a tiny octant
of radius r = 0.5 mm (closed circles). The straight line
labelled P is for an integrable system.

Figure 3 shows the spectral rigidity for the cases when the symmetry is present (open
circles), and when it is violated by removing a tiny octant of radius r = 0.5 mm (closed
circles). The straight line labelled P is for an integrable system. We note that the data for the
case of tiny symmetry violation are systematically higher than those for the case of conserved
symmetry. This agrees with the prediction of the second scenario proposed above, in which
the system that undergoes a gradual symmetry breaking looks as if it has become more regular
in the early stages of the transition.

Ellegaard et al [14] concluded from the rise of �3 over the theoretical prediction for
a superposition of two GOE sequences that the quartz block with conserved flip symmetry
has much in common with a pseudo-integrable (PI) system. They supported this conclusion
by means of other measurement. PI systems are non-integrable, yet non-chaotic systems.
Two-dimensional PI systems, exemplified by particles moving in a planar polygonal enclosure
with rational angles [5], share with the integrable system the motion of trajectories in the
phase space which is restricted to two-dimensional compact surfaces. But these invariant
surfaces are multi-connected and not tori as in the case of integrable systems. Numerical
studies of the π/3 rhombus billiard [6, 22, 23] show that the spectral fluctuation properties are
intermediate between those of a Poisson ensemble and a GOE. Bogomolny et al [23] studied
the level statistics of PI systems using a short-range Dyson model. This is a modified version
of Dyson’s stochastic Coulomb-gas model [15], in which the interaction between particles is
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restricted only to the nearest neighbours. The NNS distribution and the two-point correlation
function obtained in [23] are, respectively, given by the so-called semi-Poissonian statistics:

PSP(s) = 4s e−2s and R2,SP(s) = 1 − e−4s . (16)

The same functional form was used earlier by Date et al [7] to explain the intermediate spacing
distribution for a rectangular billiard with a perpendicular flux line. It is known, however, that
the spectral statistics of PI systems are ‘non-universal with universal trend’ [24]. Jain and
collaborators [25, 26] generalized the short-range Coulomb-gas model by taking into account
both the nearest- and next-to-nearest-neighbour interactions. They have shown that there is
a parameter βSI, which relates the strengths of these types of interactions in the cases when
a complete bound-state spectrum of the Coulomb gas is available. Among other things, they
obtained the following expression for the nth neighbour level-spacing distribution (p(n+ 1, s)
in Mehta’s notation [15]):

P (βSI)(n, s) = (βSI + 1)n(βSI+1)

�[n (βSI + 1)]
sn(βSI+1)−1e−(βSI+1)s . (17)

Therefore, the parameterβSI defines the power of level repulsion. Their results forβSI = 1 yield
the semi-Poissonian statistics. They also obtained closed-form expressions for the two-point
correlation functions RβSI

2 (s) for other integral values of βSI—see specifically equations (63),
(65), (66), (68) and figure 1 of [26].

The spectral rigidity for the PI systems is expressed in terms of the two-point correlation
function [1]. Thus, using the results of [26], we obtain the following expressions for the
spectral regidity�(βSI)

3 (L) of the spectra for the level-repulsion parameter βSI = 1−4:

�
(1)
3 (L) = L

30
+

1

16
− 1

16L
+

1

32L2
− 3

512L4
+ e−4L

(
1

64L2
+

3

128L3
+

3

512L4

)
(18)

�
(2)
3 (L) = L

45
+

2

27
− 4

81L
+

8

729L2
+

8

6561L4

+
4e−4L

6561L4

[
(9L2 − 2) cos

(
3
√

3

2
L

)
−

√
3(9L2 + 12L + 2) sin

(
3
√

3

2
L

)]

(19)

�
(3)
3 (L) = L

60
+

5

64
− 5

128L
+

1

512L2
+

45

32 768L4
+

e−8L

32 768L4
(32L2 + 24L + 3)

− e−4L

2048L4
[3(4L + 1) cos(4L) + 4L(4L + 3) sin(4L)] (20)

and

�
(4)
3 (L) = L

15
+

2

15L4

[
I

(
5π

2
, L

)
+ I

(
5π

4
, L

)]
(21)

where

I (a, x) = Re
∫ x

0
(x − r)3(2x2 − 9xr − 3r2)e−5(1−cos a−i sin a)r dr. (22)

We then calculate the corresponding spectral rigidities of an independent superposition of
two level sequences of equal densities, which is equal to 2�βPI

3 (L/2) according to Seligman
and Verbaarschot [20]. Figure 4 shows the result of calculation with the spectral rigidity of
the complete quartz cube [14], where the two-fold flip symmetry is conserved. We see from
the figure that the data agree with the curve for βPI = 1 when L � 5. This suggests that the
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β
β
β
β

∆

Figure 4. The spectral rigidity �3(L) measured in [14] for the quartz block when the symmetry
is present (open circles) compared to the predictions of the short-range Dyson model [25, 26] for
different values of the level-repulsion parameter β.

semi-Poissonian statistics is reasonable for the spectrum under investigation as far as relatively
small spacings are concerned. As we increase L, the experimental data seem to be requiring
larger values of βPI. In fact equations (18–21) suggest that

�
βPI
3 (L) ∼ 1

15(βPI + 1)L
(23)

for large values of L. However, the data do not show any tendency to saturate to a staight line,
but rather have a negative gradient everywhere. We therefore follow several authors, e.g. [6],
and represent the�3 statistic of the PI system by the Seligman–Verbaarschot [20] formula (9),
obtained for a superposition of Poisson and GOE level sequences,

�3,PI(L) = q
L

15
+�3,GOE[(1 − q)L] (24)

where q is a fitting parameter. Biswas and Jain [6] found q to be equal to 0.2 for the π/3
rhombus billiard. We do this by fitting the same statistic for the spectrum of the complete
quartz cube to 2�3,PI(L/2). We obtain q = 0.082.

We now apply the second scenario, which has been proposed in the previous section, to
the symmetry breaking in a PI system having a symmetry represented by a quantum number
that takes one of two possible values. When the symmetry is conserved, the spectrum is an
independent superposition of two sequences corresponding to the two representations of the
symmetry. The NNS distribution is accordingly represented by (2) with n = 2 and the �3

statistic by (9). The functions Pi(xi) and �3,i (L) are given by (16) and (24), respectively.
Now we again assume that as the symmetry violation starts, the eigenfunctions of the system
are divided into two classes. The first constitutes a fraction f of the eigenfunctions in which
the perturbation due to symmetry breaking can be ignored. The levels of these eigenstates are
divided into two independent sequences exactly as before switching the symmetry breaking
on. The second is the class of strongly perturbed functions that have completely lost the
symmetry. The latter class will here be modelled by a GOE. Therefore, the total spectrum
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Figure 5. The NNS distributions P (s) and spectral rigidities �3(L) for different radii of the octant
removed from a quartz block: (a) r = 0, the flip symmetry is fully conserved, (b) r = 0.5 mm,
(c) r = 0.8 mm, (d ) r = 1.1 mm, (e) r = 1.4 mm, ( f ) r = 1.7 mm, (x) the block with the huge
defocusing structure. The data are from [14], while the curves are the theoretical curves using
equations (25) and (26). Values of the parameter f that measures fractional densities of states that
keep the symmetry are given in table 1.

will be composed of three independent sequences, two with PI statistics, each having a
fractional density of f/2, and one with GOE statistics and fractional density 1 − f . During
the symmetry-breaking transition, the NNS distribution is given by
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Table 1. Best fit values for the fraction f of states not affected as a result of violating the point-
group symmetry of a quartz rectangular block by removing spherical octants of various radii r.

r 0 0.5 mm 0.8 mm 1.1 mm 1.4 mm 1.7 mm Huge defocussing
f 1 0.49 0.36 0.29 0.23 0.17 0

P(s) = 1

2
f 2(2f 2s2 + 4f s + 1)e−2f s erfc

[√
π

2
(1 − f )s

]

+
1

8
(1 − f )(2 + f s)e− π

4 (1−f )2s2−2f s

×[πf s2(1 − f )2 + 2s{(π + 4)f 2 − 2πf + π} + 8f ] (25)

which is obtained by substituting equations (3) and (16) into (2). The �3 statistic is given by

�3(L) = 2�3,PI

(
fL

2

)
+�3,GOE[(1 − f )L]. (26)

We now compare our model with the acoustic resonance spectra measured by Ellegaard
et al [14]. We start by estimating the parameter q in the expression (17) for the �3 statistic
of the PI system. We then compare equation (26) with the spectral rigidities of the other
spectra considering f as a free parameter. The best-fit values of f for spectra corresponding
to different radii of the removed octants are given in table 1. We use these values to calculate
the NNS distributions. The results of the calculation are compared with the experimental
data in figure 5. We see that the proposed model presents a satisfactory description of
the whole transition by varying a single parameter. The only disagreement is between the
calculated and measured values of P(s) at small values of s, as we have already expected.
The symmetry breaking decreases the probability of finding degenerate levels sharply, leading
to the observed dip at small s in the spacing distribution [14]. This dip is followed by an
overshoot to restore normalization. The width of this dip, which is about 1/10 of the mean
level spacing, provides an estimate for the minimum level-splitting below which two levels
can be regarded as approximately degenerate.

4. Summary and conclusion

Conventional models for symmetry breaking in chaotic systems assume that the non-diagonal
matrix elements of the symmetry-breaking perturbation are statistically equivalent. They
predict a monotonic transition from a mixed statistics to the GOE as one switches on and
increases the symmetry-breaking perturbation. This is not the behaviour of the acoustic
resonance spectra of quartz measured by Ellegaard et al. We propose another scenario for
symmetry breaking in which the levels are approximately separated into two groups, one with
and one without symmetry. This happens when the expansion of any of the wavefunctions
in terms of the eigenfunctions of the symmetry operator is either dominated by a single term
or composed of statistically equivalent contributions from all its components. Considering
a system in which a symmetry that has two representations is conserved, we represent
the spectrum as a superposition of two independent sequences, one for each symmetry
representation. Now, as we switch on the symmetry-breaking perturbation, we remove a
number of levels from these two level sequences into a third sequence. The latter corresponds
to the strongly perturbed states in which the symmetry has virtually disappeared. Because we
have increased the number of spectral partitions, the spectrum will look as if it became more
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regular by the small violation of the symmetry. The apparent regularity will continue until
the three sequences become equally populated. The further increase of symmetry breaking
will reverse the evolution of the shapes of the spectral statistics towards the GOE shapes.
Namely, this is the behaviour found by inspection of the acoustic resonance spectra of quartz
measured by Ellegaard et al. We see, for instance, from figure 5 that it is possible to describe
the evolution of the NNS distribution and the spectral rigidity during the transition from a
fully conserved to a fully violated symmetry by varying a single parameter, measuring the
fractional density of states which are practically unaffected by symmetry violation.
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